An innovative remediation for metal polluted soils – combined chemical and phytostabilisation

Viktória Feigl1, Katalin Gruiz1, Attila Anton2

1Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science

2Research Institute of Soil Science and Agrochemistry of the Hungarian Academy of Sciences
What is combined chemical and phytostabilisation?
Chemical stabilisers

- Stabilisation = immobilisation of metals
- Reduce metal mobility and solubility → reduce transport by water → lower the environmental risk
- Lower the bioavailable toxic metal content → enable germination and growth of plants → healthier plants, higher biomass
- A good stabiliser keeps its effect on long term
- Added before the settling of plants
Plants for phytostabilisation

- Metal tolerant plants
- Small metal accumulation in shoots
 → reduces metal amount that gets into food chain
 (≠ phytoextraction, when the aim is the removal of metals with hyperaccumulators)
- Increase complexity and humus-content
 → hinder leaching of metals
- Stop wind and water erosion

Reduce metal transport on all possible pathways
Site assessment

- Gyöngyösoroszi, Northern Hungary, former mine
 - Total metal concentrations in contaminated agricultural soil (mg/kg) and mine waste

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQC</td>
<td>15</td>
<td>1</td>
<td>75</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

- 11–16% of total Cd and Zn is water soluble
- 17–34% of total Cd and Zn is acetate extractable (pH=4.6)
Objectives

- To develop an innovative remediation technology, which is able to reduce the risk of the former mining site, as a priority to ensure surface water quality at catchment scale
- CCP is a part of a complex risk management strategy, which uses GIS based, catchment scale risk assessment
- To select the best stabiliser and stabiliser–plant combination for Gyöngyösoroszi soil and waste material
Technological experiments

1. Microcosm
 - 2 kg Soil and amendments
 - Thermostate 25 °C
 - Irrigation every two months
 - Soilsampling and analysis

2. Lysimeter
 - 0.35 m³ Soil and amendments
 - Water collection and analysis
 - Irrigation when necessary
 - Plant collection and analysis

3. Field experiment
 - 90 m³ Soil and amendments
 - Soil sampling and analysis
 - Water collection and analysis
 - Irrigation when necessary
 - Plant collection and analysis

Green 5 Conference
Monitoring with integrated methodology

Integrated methodology

Chemical analytical methods
- Aqua Regia digest. + ICP-AES analyses
- Ammonium-acetate + EDTA extr. + ICP
- Ammonium-acetate extr. (pH=4.6) + ICP
- Water extraction + ICP analysis

Biological methods
- Plant bioaccumulation test

Environmental toxicity tests
- *Vibrio fischeri* bioluminescence inhibition
- *Azomonas agilis* dehydrogenase activity inhibition
- *Sinapis alba* root and shoot growth inhibition

Metal content of water by ICP-AES.
Metal content of plants by ICP-AES after nitric acid + hydrogen-peroxide (1:1) digestion.
Microcosms

- agricultural soil (1) and mine waste (2)

- traditional chemical stabilisers
 - hydrated lime, raw phosphate, alginite, lignite

- waste material for stabilisation
 - fly ashes (6) (pH=6.4–12.6) and their combination with lime
 - Fe-Mn-hydroxide precipitate from drinking water cleaning (3, 5)
 - red mud from bauxite processing (4)
Microcosm results with alkaline fly ash

Decrease in acetate extractable and water soluble Zn content in fly ash ‘A’ treated agricultural soil

Compared to non-treated = 100%
Best stabilisation with amendments

Decrease (%) in metal mobility and toxicity of mine wastes and soil after treatment

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water extractable Cd and Zn</td>
<td>99</td>
<td>98</td>
<td>78</td>
<td>99</td>
<td>99</td>
<td>92</td>
<td>97</td>
<td>-142</td>
<td>99</td>
<td>71</td>
<td>79</td>
<td>83</td>
</tr>
<tr>
<td>Acetate extractable Cd and Zn</td>
<td>49</td>
<td>34</td>
<td>12</td>
<td>68</td>
<td>53</td>
<td>31</td>
<td>21</td>
<td>-9</td>
<td>68</td>
<td>53</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Bioaccumulated Cd and Zn</td>
<td>70</td>
<td>74</td>
<td>10</td>
<td>57</td>
<td>70</td>
<td>70</td>
<td>48</td>
<td>-33</td>
<td>70</td>
<td>~0</td>
<td>~0</td>
<td>~0</td>
</tr>
<tr>
<td>Plant toxicity</td>
<td>70</td>
<td>60</td>
<td>62</td>
<td>10</td>
<td>20</td>
<td>31</td>
<td>20</td>
<td>-15</td>
<td>30</td>
<td>60</td>
<td>56</td>
<td>~0</td>
</tr>
</tbody>
</table>

In non-treated decrease = 0%
Construction of lysimeters
Stabilising effect of fly ashes in lysimeters

Effect of fly ashes on Cd and Zn in drain water from heavily weathered waste material

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cd (µg/l)</th>
<th>Zn (µg/l)</th>
<th>Decrease Cd (%)</th>
<th>Decrease Zn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-treated</td>
<td>311</td>
<td>53 677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fly ash, type ‘T’</td>
<td>30.4</td>
<td>6 405</td>
<td>90.2</td>
<td>88.0</td>
</tr>
<tr>
<td>Fly ash, type ‘V’</td>
<td>0.2</td>
<td>72.5</td>
<td>>99.9</td>
<td>99.9</td>
</tr>
<tr>
<td>Fly ash, type ‘A’</td>
<td>0.1</td>
<td>15.2</td>
<td>>99.9</td>
<td>>99.9</td>
</tr>
<tr>
<td>‘A’ as reactive barrier</td>
<td>0.1</td>
<td>26.7</td>
<td>>99.9</td>
<td>>99.9</td>
</tr>
<tr>
<td>EQC for GW</td>
<td>5.0</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Waste dump in Bányabérc

Effect of AMD

Waste dump

Nagyvölgyi-creek
Construction of field plots
Construction of field plots
Construction of field plots
The plots
Water collection
Field experiments with mine waste

Cd and Zn content of drain water from field plots

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cd</th>
<th>Zn</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-treated (µg/l)</td>
<td>441</td>
<td>89 079</td>
<td>2.9</td>
</tr>
<tr>
<td>Fly ash (µg/l)</td>
<td>138</td>
<td>30 380</td>
<td>4.1</td>
</tr>
<tr>
<td>Fly ash + lime (µg/l)</td>
<td>2.3</td>
<td>226</td>
<td>7.2</td>
</tr>
<tr>
<td>EQC for GW</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Fly ash (% decrease)</td>
<td>68.8</td>
<td>65.9</td>
<td></td>
</tr>
<tr>
<td>Fly ash + lime (% decrease)</td>
<td>98.5</td>
<td>99.7</td>
<td></td>
</tr>
</tbody>
</table>
Effect of fly ash + lime on mine waste

Effect of fly ash + lime treatment on the characteristics of heavily weathered mine waste

<table>
<thead>
<tr>
<th>Decrease in</th>
<th>Fly ash</th>
<th>Fly ash + lime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water extracted metal conc.</td>
<td>99%</td>
<td>>99%</td>
</tr>
<tr>
<td>Acetate extracted metal conc.</td>
<td>80%</td>
<td>85%</td>
</tr>
<tr>
<td>Bioaccumulated metal conc.</td>
<td>59%</td>
<td>84%</td>
</tr>
<tr>
<td>Toxicity</td>
<td>67%</td>
<td>75%</td>
</tr>
<tr>
<td>Soil activity (increase)</td>
<td>10×</td>
<td>100×</td>
</tr>
</tbody>
</table>
Effect of treatment on the growth of grass

0.16 ppm Cd (FQC=1 ppm)
58 ppm Zn (FQC=100 ppm)
The growth of *Sorghum* species

Sorghum sudanense
- 0.43 ppm Cd (FQC=1 ppm)
- 59 ppm Zn (FQC=100 ppm)

Sorghum vulgare
- 0.27 ppm Cd (FQC=1 ppm)
- 43 ppm Zn (FQC=100 ppm)
Agricultural experimental area

Flood-plain
Contamination distribution

Gyöngyösoroszi mining area

3D Contour Plot (distribution of the zinc in the hobby garden)

Toka-creek

See poster:
M. Tolner, G. Nagy, E. Vaszita and K. Gruiz: In situ delineation of point sources and high resolution mapping of polluted sites by field-portable X-ray Fluorescence measuring device

Green 5 Conference
Effect of fly ash treatment on agricultural soil

Decrease in metal mobility and bioavailability in agricultural soil

<table>
<thead>
<tr>
<th>Test method</th>
<th>Non-treated (mg/kg)</th>
<th>Fly ash treated (mg/kg)</th>
<th>Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water extracted Cd</td>
<td>0.051</td>
<td><0.004</td>
<td>92</td>
</tr>
<tr>
<td>Acetate extracted Cd</td>
<td>1.54</td>
<td>0.275</td>
<td>82</td>
</tr>
<tr>
<td>Total Cd</td>
<td>5.23 (200)</td>
<td>5.23 (1)</td>
<td></td>
</tr>
<tr>
<td>Bioaccumulated Cd</td>
<td>6.63</td>
<td>0.72 (1)</td>
<td>89</td>
</tr>
<tr>
<td>Water extracted Zn</td>
<td>4.106</td>
<td>0.315</td>
<td>92</td>
</tr>
<tr>
<td>Acetate extracted Zn</td>
<td>237.4</td>
<td>47.7</td>
<td>80</td>
</tr>
<tr>
<td>Total Zn</td>
<td>1102 (200)</td>
<td>1102 (100)</td>
<td></td>
</tr>
<tr>
<td>Bioaccumulated Zn</td>
<td>503</td>
<td>108 (100)</td>
<td>79</td>
</tr>
</tbody>
</table>

EQC and FQC in blue brackets.
Plant growth

Zea mays

Non-treated

Treated

Sorghum sudanese

Non-treated

Treated

Green 5 Conference
Technology verification

- Technology efficiency:
 - Mass balance based on mobile metal fraction
- Environment efficiency:
 - Assessment of risk, RQ calculation
- Cost evaluation
- SWOT analysis

Risk and cost compared with alternatives

<table>
<thead>
<tr>
<th></th>
<th>„0“</th>
<th>D&D</th>
<th>D&DTD</th>
<th>Soil washing</th>
<th>CCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk score</td>
<td>1291</td>
<td>192</td>
<td>110</td>
<td>149</td>
<td>44</td>
</tr>
</tbody>
</table>
| Specific cost | 3.4 | 91.7 | 12.1 | 52.1 | 2.4 | (euro/t, 2006)
Conclusions

- Combined chemical and phytostabilisation is an effective technology for the remediation of diffusely metal polluted soils.
- Fly ash and the combination of fly ash + lime is effective in reducing metal mobility in agricultural soil and mine wastes: below EQC for GW.
- On the stabilised, previously barren mine waste material a healthy, closed vegetation was able to develop, with metal content under FQC.
- The verification gave good result, therefore hopefully the trust and confidence towards this technology will improve and this useful and smart innovation will get into the market.
Aknowledgements

- “DIFPOLMINE” EU Life 02 ENV/F000291 Demonstration Project (www.difpolmine.org),
- “BANYAREM” Hungarian R&D Project GVOP 3.1.1-2004-05-0261/3.0 (www.eugris.info/projects),
- “MOKKA” Hungarian R&D Project NKFP-020-05 (www.mokkka.hu),
- Albert Apponyi programme

Established by the support of the National Office for Research and Technology.
Thank you for your attention!

For further information send an e-mail to

vfeigl@mail.bme.hu or
gruiz@mail.bme.hu

and see poster

V. Feigl, A. Anton, F. Fekete, K. Gruiz:
Combined chemical and phytostabilisation of metal polluted soils – From microcosms to field experiments

Green 5 Conference