REDUCTION OF ABIOTIC STRESS IN A METAL POLLUTED AGRICULTURAL AREA BY COMBINED CHEMICAL AND PHYTOSTABILISATION

VIKTÓRIA FEIGL1 – ORSOLYA KLEBERCZ2 – NIKOLETET UZINGER2 – KATALIN GRUIZ2 – ATTILA ANTON2
1Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Šzent Gellért tér 4, Budapest, Hungary, vfeigl@mail.bme.hu
2Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences

INTRODUCTION TO THE PROBLEM

The agricultural area south to the village of Gyöngysösoszori, Hungary is heavily polluted with toxic metals of mining origin. The hobby gardens are regularly flooded by the Toka-creek, which carries metal polluted sediment from the abandoned mining area north to the village (Figure 1 and 2). Due to the anthropogenic stress the vegetables and crops produced in the area contain high amount of toxic metals, such as Zn, Cd, Pb and As, which represents unacceptable risk for humans and other members of the food chain. The metal content of plants was found to be above the limit value for food and fodder. The activity of the soil microflora was lower than in the unpolluted area and the soil was toxic for bacteria, plants and animals, according to ecotoxicological test-results. To reduce the stress posed on soil living organisms and plants, the area is planned to be treated by combined chemical and phytostabilisation. The technology is able to reduce metal transport by all possible pathways: transport by runoff and seepage water, erosion, deflation and plant uptake. Plant uptake is reduced both by chemical treatment restricting metal mobility and by the selection of non-accumulative plant species.

FIELD EXPERIMENT AND MONITORING

Field plot size: 20 m × 60 m
Chemical stabiliser: 5 w/w% (75 t/ha) fly ash (half of the area treated), best stabiliser chosen based on microcosm experiments (Feigl et al., 2007).
Plants used for phytostabilisation: Zea mays, Sorgum vulgare technicum, Sorgum vulgare sudanense and natural vegetation (invasive weed) as plant control.

Monitoring:
- integrated methodology
 - Combination of chemical-analytical methods with biological methods and toxicity testing.

Metal content of soil:
- Extractable by distilled water,
- Extractable by ammonium-acetate (pH=4.5),
- Total by aqua regia digestion, Analysis by ICP-AES.

Toxicity of the soil:
- Vibrio fischeri luminescence inhibition test,
- Sinapis alba root and shoot growth inhibition test, Test applied to whole soil (direct contact).

Soil activity:
- Aerobic living cell number.

Metal content of plants:
- Digestion with nitric acid and hydrogen peroxide Analysis by ICP-AES.

SOLUTION TO THE PROBLEM - RESULTS

The concentration of metals in the hobby garden soil is the highest close to the Toka-creek due to regular flooding and decreases with the distance. The most mobile metals in the soil are Zn and Cd, while Pb and As are less available. Due to the treatment with fly ash the extractable (mobile) metal contents decreased with 80–92% (Figure 3 and Table 1). The biological activity of the soil microflora increased and the toxicity of the soil decreased by 15–32% according to bacterial and plant biotests (Table 2). The fly ash treatment also decreased the metal accumulation of plants by 30–80% thus getting below the limit value for food and fodder (Cd: 1 mg/kg, Pb: 10 mg/kg, Zn: 100 mg/kg). The increase of metal content measured in the invasive weed mixture underline the importance of the proper selection and control of plants applied for phytostabilisation (Figures 4–7).

CONCLUSIONS

The fly ash addition decreased the mobility of the Zn, Cd and Pb in toxic metal contaminated agricultural soil at a former mining site. According to our field experiments’ results fly ash is an efficient chemical stabilising agent and combined with suitable phytostabilising plants is a promising environmentally- and cost efficient remediation technology able to reduce environmental risk to an acceptable value.

ACKNOWLEDGEMENTS

The research work was performed with the financial support of the “BANYAREM” GVOP 3.1.1-2004-05-0261/3.0, the “MOKKA” NKFP-020-05 (www.moknika.hu) and the “BIO_HAM2”, OM-00375/2008 Hungarian R&D Projects.

REFERENCES