The postmining management of mining wastes is a timely issue in Europe, adapted potential of the Difpolmine approach applied to diffuse pollution of mining origin at the Salsigne (France) site. The postmining activities at the Hungarian site include the management of both the point and diffuse sources. The highest

- Tiered Environmental Risk Assessment Methodology for metal-mining wastes.
- Development of a risk based management concept
- Inventory of pollution sources using historical documents and site assessment and their first ranking by a mark-system.
- Creation of land-use specific target values.
- Simulation of the effects of the removal or non-removal of any point or diffuse source by the GIS-based risk model.
- In case of diffuse and remaining pollutant sources the combined chemical & phytostabilisation is the BAT for Risk or by simple phytostabilisation and revitalisation of the waste or soil.

CHEMICAL & PHYTOSTABILISATION

QUANTITATIVE RISK ASSESMENT

After excavation and/or confinement of hazardous wastes of point sources the combined chemical & phytostabilisation will be applied to the diffuse sources and to the residual waste after removal of... remediation was calculated from the ecological target quality of the surface-water using the GIS-based transport model.

CONCLUSIONS

A complex risk management tool was established for the postmining management of the mine wastes of the Toka water catchment. The Hungarian methodology utilized the results of the DIFPOLMINE project, the GIS-based pollution mapping and transport modeling and the combined chemical & phytostabilisation for reducing the risk of diffuse and remaining pollution sources. In spite of the fact that the Toka catchment area differs in many aspects from the Salsigne site, the main concept and the modified Environmental Risk Assessment and Risk Reduction methodology could be utilized.

The Hungarian methodology was worked out on catchment scale basis, but it is applicable for point or diffuse sources or situation considering their later development. The same methodology is applicable to regional scales, where the dominant risk is represented by the metal content of the surface water.

The risk reduction concept is based on reducing the metal water quantity and quality by removal of the point sources and chemical & phytostabilisation of the residual and diffuse pollution. The scale of technology is selected from the results of the field test, which was performed using as an alternative mine-water treatment technologies for the remediation of mine waste.