Phytoremediation of heavy metal contaminated sites:

a focus on field experiments in a heavy metal contaminated region in Belgium (‘Noord-Limburg’)

Ann Ruttens and Jaco Vangronsveld (Hasselt University)
Veerle Grispen and Jos Verkleij (Vrije Universiteit Amsterdam)
Ludo Diels (VITO)
Content

1. Non ferro industry in the ’Noorderkempen’ (Belgium)

2. Remediation options for soils contaminated with heavy metals

3. Phytoremediation of heavy metal contaminated soils
 3.1 Phytoextraction
 3.2 Phytostabilisation

4. Conclusions
1. Non ferro industry in ‘Noord-Limburg’

- since the end of 19th century zinc smelters have been active:
 - Lommel
 - Overpelt
 - Balen
 - (Budel-NL)

- Poor sandy soils (limited agricultural productivity)
 => open area + need for economic activities
 - presence of several channels => easy transport of ores and products

- Result of the activities: widespread soil contamination with metals (Zn, Cd, Pb)
 => related to the production technology
 => diffuse contamination + point sources
 => area: by estimation >280 km² !!!
• Historic soil contamination: illustration

⇒ emissions became lower and lower in the course of time: first because of shift from pyrometallurgic to electrolytic process technology, later due to improved filter systems

Source: Staessen et al., 1995
2. Remediation options
for soils contaminated with heavy metals

Engineering approaches:

-Metal removal:
 - excavation and landfilling
 - excavation and soil washing techniques

-Metal stabilization:
 - vitrification (heat 1600-200°C)
 - physical caps
 - addition of stabilizing materials (e.g. cement)
Disadvantages engineering approaches:

- clean soil for replacement?
- destruction of soil ‘quality’
- high cost (280 km² !)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Cost per ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavate + landfill</td>
<td>1 620 000 €</td>
</tr>
<tr>
<td>Excavate + soil washing</td>
<td>790 000 €</td>
</tr>
</tbody>
</table>

=> contaminated area in ‘Noord-Limburg’ too large to be treated with engineering techniques (= 45 360 000 000 €, excavate and landfill)

=> alternative option? PHYTOREMEDICATION?
Remediation: cost per hectare*

- IMMobilization + PHYtostabilization: 10,000 €
- EXCAVATION + SOIL WASHING: 775,000 €
- EXCAVATION + LANDFILLING: 1,600,000 €

*Cunningham & Berti (1999)
1. Non ferro industry in ‘Noord-Limburg’ (Belgium)

2. Remediation options for soils contaminated with heavy metals

3. Phytoremediation of heavy metal contaminated soils
 3.1 Phytoextraction
 3.2 Phytostabilization

4. Conclusions
3. Phytoremediation of metal contaminated soils

- Phytoremediation of contaminated soils
 = the use of plants to reduce the negative impact of a contaminated site, or for soil clean up

- In case of metal contaminated soils:
 - PHYTOEXTRACTION: extraction of metals from the soil using metal accumulating plants (clean-up)
 - PHYTOSTABILIZATION: in situ metal inactivation by means of revegetation often in combination with metal-immobilizing and/or fertilizing soil amendments (immobilization/inactivation)
3.1 PHYTOEXTRACTION

MAIN AIM OF THE STRATEGY

-removal of contaminants from the soil by plants
-root uptake and repeated harvesting
(contaminant preferably to be translocated and concentrated in above-ground biomass)

(adapted from Cuningham et al., 1995)
DESIRABLE CHARACTERISTICS IN AN EFFECTIVE PHYTOEXTRACTION SPECIES

• High metal accumulation in easily harvested plant parts

• Tolerance to elevated soil metal levels that may be coupled with low macronutrient and soil organic matter content

• Potential ‘use’ of the biomass:
 -originally: hyperaccumulators
 => no further use of biomass, metal recuperation? dumping?
 => long clean up time due to low biomass

 -more and more: high biomass producing species with moderate metal content but with harvestable product/economic value!
 possibilities: -woody plants (eg willow) => ‘green energy’
 -oil producing plants (eg rapeseed) => motor-oil
TARGET AREA’S

– Agricultural soils
– Abandoned agricultural land
– Kitchen gardens

Metal concentrations in crops often above consumption limits!
=> solution needed for the area!
PHYTOEXTRACTION APPROACH LOOKS ATTRACTIVE

=>alternative land use scenario’s (non food crops delivering some economic benefits)

=>combined with soil clean up?

=>system of sustainable land management

=>long clean up times not really problematic
FIELD IN BALEN

- 500 m from UMICORE in Balen
- former maize field
- sandy soil
- pH-KCL 5.5 ±0.1
- metal content (aqua regia): cfr. table

<table>
<thead>
<tr>
<th>mg/kg DS</th>
<th>Zn</th>
<th>Cd</th>
<th>Cu</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>223</td>
<td>5.0</td>
<td>32</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>± 17</td>
<td>± 0.3</td>
<td>± 3</td>
<td>± 17</td>
</tr>
<tr>
<td>Clean up value</td>
<td>600</td>
<td>2.0</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>
PLANT SPECIES TESTED

Maize Rapeseed Sunflower Tobacco

=> performance of different species in ‘Noord-Limburg’ conditions?
=> ’best species’ and ’best’ cultivars of a species? (highest metal removal)
=> economic aspects and potential ‘use’ of biomass
Maize

*2 cultivars
*growth and biomass production OK (18 ton/ha)
*metal concentrations in plant (‘best cultivar’):

<table>
<thead>
<tr>
<th>mg/kg DW</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>maize plant</td>
<td>339</td>
<td>16.1</td>
<td>2.7</td>
<td>21.4</td>
</tr>
<tr>
<td>limit value</td>
<td>/</td>
<td>/</td>
<td>1.1</td>
<td>45.5</td>
</tr>
<tr>
<td>(KB 21/4’/99)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil depth of 25 cm</th>
<th>Cd removal g/ha/j</th>
<th>reduction Cd conc. mg/kg /j</th>
<th>‘clean up’ time (5=>2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual biomass</td>
<td>48.6</td>
<td>0.016</td>
<td>185 y</td>
</tr>
</tbody>
</table>
Rapeseed (winter)

*10 varieties
*growth and biomass production OK (8.3 t/ha)
*metal concentrations ‘beste’ cv:

<table>
<thead>
<tr>
<th>mg/kg DW</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>/</td>
<td>5.05</td>
</tr>
</tbody>
</table>

Soil depth of 25 cm

<table>
<thead>
<tr>
<th>Soil depth of 25 cm</th>
<th>Cd removal g/ha/j</th>
<th>reduction Cd conc. mg/kg /j</th>
<th>‘clean up’ time (5=>2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual biomass</td>
<td>42</td>
<td>0.014</td>
<td>215</td>
</tr>
</tbody>
</table>
Screening 15 commercial varieties (Rolf HERZIG)

San Luca: good biomass production (12.6 ton/ha; 6 plants/m²)

Other varieties: small or even absent

=> nutrients?

=> sowing data?

=> pH?

=> metal toxicity? YES!
*metal concentrations in sunflower (‘best cv’)

<table>
<thead>
<tr>
<th>mg/kg DW</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>plant</td>
<td>657</td>
<td>/</td>
<td>6.75</td>
<td>/</td>
</tr>
</tbody>
</table>

*summary sunflower:

<table>
<thead>
<tr>
<th>Soil depth of 25 cm</th>
<th>Cd removal g/ha/j</th>
<th>reduction Cd conc. mg/kg /j</th>
<th>‘clean up’ time (5=>2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual biomass</td>
<td>85</td>
<td>0.028</td>
<td>106 y</td>
</tr>
</tbody>
</table>

Remark:

-sunflowers seem more metal sensitive than maize and rapeseed
-metal toxicity (Zn) can reduce phytoextraction success of sunflower (pH!=>liming)!
Tobacco

*Fop (Forchheim Pereg) (4.3 ton/ha):

=> NF Cu 7-15; NF Cu 10-2

Bag (Badisher Geudertheimer)

=> NB Cu 10-8; NB Cu 10-4 (8.4 ton/ha)

*growth and biomass OK *(except. Bag)

*metal concentrations in ‘best’ variants:

<table>
<thead>
<tr>
<th></th>
<th>mg/kg DW</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fop</td>
<td></td>
<td>525</td>
<td>24.6</td>
<td>21.0</td>
<td>49.9</td>
</tr>
<tr>
<td>NB CU 10-8</td>
<td></td>
<td>339</td>
<td>17.3</td>
<td>10.4</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Soil depth of 25 cm (Fop/NB)

Cd removal g/ha/j reduction Cd conc. mg/kg /j ‘clean up’ time (5=>2)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>actual biomass</td>
<td>90 / 88</td>
<td>0.030 / 0.029</td>
<td>101 / 103</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of different species (best results)

<table>
<thead>
<tr>
<th></th>
<th>Maize</th>
<th>Rapeseed</th>
<th>Sunflower</th>
<th>Tobacco</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° of cultivars</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>2(+4)</td>
</tr>
<tr>
<td>Range Cd mg/kg DS</td>
<td>2.2-2.7</td>
<td>3.9-8.3</td>
<td>5.9-12.9</td>
<td>9.2-22.2</td>
</tr>
<tr>
<td>Cd conc. ‘Best’ extractor</td>
<td>2.7</td>
<td>5.05</td>
<td>6.75</td>
<td>15.96</td>
</tr>
<tr>
<td>Biomass* kg/ha</td>
<td>18t/ha/j (14pl/m2)</td>
<td>8.3 t/ha/j (4pl/m2)</td>
<td>12.6 t/ha/j (6 pl/m2)</td>
<td>8.4 t/ha/j (4 pl/m2)</td>
</tr>
<tr>
<td>Cd removal</td>
<td>48.6g/ha/j</td>
<td>42 g/ha/j</td>
<td>85 g/ha/j</td>
<td>90 g/ha/j</td>
</tr>
<tr>
<td>Clean up time (5ppm=>2ppm)</td>
<td>185 y</td>
<td>215 y</td>
<td>106 years</td>
<td>101 years</td>
</tr>
</tbody>
</table>

Remark: biomass production can influence metal removal strongly
Conclusion phytoextraction

- tobacco most promising in terms of metal removal, but ‘economics’?
- for all crops: clean up time = long
 => Realistic?? Yes, for low to moderate contaminations and if...
 (other aspects to be involved)

How to improve efficiency of phytoextraction?

- Genetic transformation of high biomass producing plants
- Increase mobility/plant availability of metals in soils, using (1) metal chelating agents (f.i. EDTA), (2) adjusting pH of soils (3) siderophore producing rhizosphere bacteria
- Increase metal accumulation and translocation capacity in plants: metal accumulating endophytic bacteria
Content

1. Non ferro industry in ‘Noord-Limburg’ (Belgium)

2. Remediation options for soils contaminated with heavy metals

3. Phytoremediation of heavy metal contaminated soils
 3.1 Phytoextraction
 3.2 Phytostabilization

4. Conclusions
3.2 PHYTOSTABILIZATION

TARGET AREA’S

large bare surfaces, caused by smelting activities (aerial deposition of acids and metals from zinc smelters)
HEALTH RISKS

METALCONC in BLOOD ↑

metalconc. on vegetables ↑
metalconc. in vegetables ↑

contamination surroundings e.g. kitchen gardens

METALCONC in BLOOD ↑

metals are solubilized in gastro intestinal tract

metal conc. in vegetables ↑

inhalation

pica behaviour

runoff

rainfall

winderosion

soil

groundwater

Metal leaching
IMMOBILIZATION + PHYTOSTABILIZATION

BARE AREA

PHYTOTOXICITY

Addition of metal immobilizing soil amendment

BIOAVAILABLE FRACTION

= HIGH

‘GREEN’ AREA

REDUCED PHYTOTOXICITY

sorption

precipitation

BIOAVAILABLE FRACTION

= LOW
Contamination surroundings e.g. kitchen gardens

⇒ METALCONC in BLOOD ↑

metaalconc. on vegetables ↑
metaalconc. in vegetables ↑

⇒ METALCONC in BLOOD ↑

Contamination surroundings e.g. kitchen gardens

⇒ METALCONC in BLOOD ↑

Solubilization of metalspecies in gastro-intestinal tract

⇒ METALCONC in BLOOD ↑

Pica gedrag

⇒ METALCONC in BLOOD ↑

Metal leaching

groundwater

soil

winderosion

inhalation

runoff

rainfall
MAIN AIMS OF STRATEGY

• "is not a technology for real clean-up of contaminated soil but for stabilizing (inactivating) trace elements that are potentially toxic
• restoring plant cover and installation of a functioning ecosystem
• inhibition of lateral wind erosion, and reduction of trace element transfer to surface- and groundwater
• attenuation of the impact on site and to adjacent ecosystems
PHYTOSTABILIZATION AT LOMMEL-MAATHEIDE (BELGIUM)

- Old pyrometallurgical zinc smelter site (1904-1974) - bare area
- Poor, acid, sandy soil
 Zn: 2800-20000 mg/kg
 Pb: 700-2000 mg/kg
 Cd: 10-70 mg/kg
 Cu: 400-2000 mg/kg
- Based on laboratory tests
 amendement selected: cyclonic ashes from Beringen:
Lommel-Maatheide 1990-2003

1990, 2 weeks after sowing

1995

2003
Cyclonic ashes (from Beringen)
origin and production

- cyclonic ashes originate from the fluidized bed burning of coal refuse
- minerals present in the schists are: quartz, illite, kaolinite, chlorite, calcite (CaCO_3), dolomite ($\text{(Ca,Mg)}\text{CO}_3$), anhydrite ($\text{CaSO}_4$), siderite ($\text{FeCO}_3$) and pyrite ($\text{FeS}_2$); illite is the most dominant clay present
- the schists are burned by heating in an electronically guided fluidized bed oven at ca. 800°C
Cyclonic ashes (from Beringen) : some physico-chemical characteristics

- The pH of the product is strongly alcaline (± 11). The high pH can be explained by the presence of MgO and CaO which are formed during the heating of CaCO$_3$ and (Ca,Mg)CO$_3$ minerals present in the schists. The oxides form hydroxides (Ca(OH)$_2$ and Mg(OH)$_2$) when they come in contact with water.

- A mean specific surface of ± 20 m2 g$^{-1}$ was measured.

- The cation exchange capacity was found to be about 20 meq/100 g
Cyclonic ashes (from Beringen): working mechanism

- increased adsorption on binding sites of the original soil components freed due to a ‘liming effect’ (presence of (Ca(OH)$_2$ and Mg(OH)$_2$))
- precipitation reactions due to increased soil pH
- adsorption reactions on the surface of the modified clay
- coprecipitation of metals with Al, Fe and Mn oxides (hypothetic)
- possibly also formation of metal silicates
Laboratory tests before start of a field experiment

- Evaluation of one or several soil amendments:
 - Short term evaluations:
 - physico chemical test (soil parameters, selective or sequential extractions)
 - biological tests (bacteria, plants, invertebrates):
 => elimination of toxicity?
 => side-effects?

- Long term evaluations: simulation experiment
 (results will be complemented with long term evaluation of the field)

- Selection of a seed mixture
Illustration of laboratory evaluations: short term

- soil pH and conductivity
- selective or sequential extractions (Tessier)

Conclusion: CA reduces exchangeable metal fraction in favour of carbonate bound and residual fraction.
• bacterial availability test (BIOMET)

Conclusion: CA reduces bacterial Zn availability almost to control level even in 100%MH soil
• toxicity test with plants

growth response

stress-enzyme (GPOD)

Conclusion: CA eliminates/reduces phytotoxicity in MH soil
Remark: BE results \Leftrightarrow Ca-nitrate extractions
Conclusion: no significant weight loss of *Eisenia fetida* after treatment of MH soil with CA.
Illustration of laboratory evaluation: long term simulation

- columns (Ø25 cm), filled with 1m soil
- simulation of rainfall (destilled water) (annual rainfall of 600mm, simulated in 1 week)
- follow up of metal leaching and soil parameters (pH, exchangeable metals)
CA-B (5%)
Bodem Lommel
Zn tot = 730; Cd tot = 8 ppm; pH = 6.5

Lime (2%)
Bodem Budel
Zn tot = 170; Cd tot = 2.3, pH = 4.1

Conclusion:
- with CA-B exchangeable soil metal content stays at a constant low level
- Increase of the difference with untreated soil
- with lime: exchangeable soil metal content increases with time
- decrease of the difference with UNT
Conclusion laboratory tests:

CA are able to consistently reduce metal mobility and toxicity in MAATHEIDE soil; long term effect expected

Field-experiment
Lommel-Maatheide 1990-2003

1990, 2 weeks after sowing

1995

2003
FOLLOW-UP EVALUATIONS

- **physico-chemical**: general soil parameters, selective or sequential extractions, pore water...
- **biological**: bacteria, plants, invertebrates
 - toxicity and availability tests
 - biodiversity in the field (plants, mycorrhizas, nematodes)
Total zinc concentration (mg/kg dry soil), water-extractable zinc (mg/kg dry soil) and ratio water-extractable zinc on total zinc concentration at different moments after the treatment

<table>
<thead>
<tr>
<th></th>
<th>Zn_{tot}</th>
<th>Zn_{H20}</th>
<th>Ratio tot/H_{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OVERPELT 1997-2003: amendment tested ‘compost+beringite’

1997

1998, 2 months after sowing

1999

2002
EFFECT OF SOIL ADDITIVES ON METAL PERCOLATION

⇒ Reduction of Zn and Cd leaching after all treatments
⇒ increase of Cu and Pb leaching after compost addition!
⇒ partly compensated by combination with CA
⇒ completely compensated by combination with CA+SS
Cyclonic ashes from Beringen not available anymore: search for alternative cyclonic ashes:

Methodology:

• Analysis of the product itself (pH, conductivity, metal content, ...)

• **Short term** evaluations on treated soils:
 - physico-chemical tests (extractions)
 - biological tests (organisms of different trophic levels)
 (= evaluate reduction in toxicity, possible-side effects)

• **Long term** evaluations on treated soils:
 - simulation experiments + effect on metal leaching
 - field validation + follow up (physical + biological)
4. General conclusions

- In case studies on field scale phytostabilization has been shown to be successful.
- Phyto-extraction will only be realistic when incorporated in a long-lasting system of sustainable agricultural/sylvicultural use of contaminated soils (economical aspects!!)
- Plant-based strategies are promising, attractive and easily acceptable for the remediation of soils contaminated with heavy metals.
Acknowledgements

- OVAM (Public Waste Agency of the Flemish Region)
- EU project QLRT-2001-00429 (PHYTAC)
- European Fund for Regional Development